Terahertz Metal -Oxide -Semiconductor -Transistoren based on oriented carbon nano tubes -Arays

Terahertz Metal -Oxide -Semiconductor -Transistoren based on oriented carbon nano tubes -Arays
  • Dang, S., Amin, O., Shihada, B. & Alouini, M.S. What should 6g be? Nat. Electron. 320–29 (2020).

    Article Google Scholar

  • Saleh, R. et al. System-on-chip: reuse and integration. Proc. IEEE 941050–1069 (2006).

    Article Google Scholar

  • Tessmann, A. et al. 20 nm in0.8Ga0.2As a Moshemt -MMIC technology on silicon. IEEE J. Solid-State Circuits 542411–2418 (2019).

    Article Google Scholar

  • Passi, V. & Raskin, JP Review on the analog/radio frequency performance of progressive silicon -mos -feed. Semikond. Ski. Technol. 32123004 (2017).

    Article Google Scholar

  • Lee, H.-J. et al. Intel 22 NM Finfet (22ffl) process technology for RF and MM wave applications and circuit design optimization for FinFet technology. In Proc. IEEE International Electron Devices meet 316–319 (IEEE, 2018).

  • Zota, CB et al. High-performance quantum quantum-well-inas-on-si-MOS feed with SUB-20-NM-GATE length for HF applications. In Proc. IEEE International Electron Devices Meeting 39.4.1–39.4.4 (IEEE, 2018).

  • Zota, CB et al. Ingaas-on isolator-MOS feed with scaled logic devices and recording performance. In Proc. IEEE symposium about VLSI technology 165–166 (IEEE, 2018).

  • Wu, J. et al. LG= 30 nm inas -channel -mos -feed exhibit FMax.= 410 GHz and FT= 357 GHz. IEEE Electron Device Lett. 39472–475 (2018).

    Article Google Scholar

  • KIM, DH & DEL Alamo, yes 30 nm Pseudomorphs hem on an inp substrate with a cutoff-cutoff frequency of 628 GHz. IEEE Electron Device Lett. 29830–833 (2008).

    Article Google Scholar

  • Novoselov, KS et al. Electrical field in atomically thin carbon films. Science 306666–669 (2004).

    Article Google Scholar

  • Wang, QH, Kalantar-Zadeh, K., KIS, A., Coleman, JN & Strano, MS Electronics and Optoelectronics of two-dimensional transition metal-dichalids. Nat. Nanotechnol. 7699–712 (2012).

    Article Google Scholar

  • Radisavljevic, B., Ramenovic, A., Brivio, J., Giaketti, v. & Kish, A. Unterschicht-Mos2 Transistors. Nat. Nanotechnol. 6147–150 (2011).

    Article Google Scholar

  • Burke, PJ AC performance of nanoelectronics: on the way to a ballistic THZ nanorale transistor. Fixed body electron. 481981–1986 (2004).

    Article Google Scholar

  • Koswatta, Sun, Valdes-Garcia, A., Steiner, MB, Lin, Y.-M. & Avouris, P. Ultimate RF performance potential of carbon electronics. IEEE Trans. Mikrowolk. Theory technology. 592739–2750 (2011).

    Article Google Scholar

  • Zhong, D., Zhang, Z. & Peng, L.-M. Carbon nanotube radio frequency electronics. nanotechnology 28212001 (2017).

    Article Google Scholar

  • Rutherglen, C., Jain, D. & Burke, P. Nanotube Electronics for high -frequency applications. Nat. Nanotechnol. 4811–819 (2009).

    Article Google Scholar

  • Liu, L. et al. Aligned, semi-conducting carbon nanor moth arrays with high density for high-performance electronics. Science 368850–856 (2020).

    Article Google Scholar

  • Shi, H. et al. High frequency transistors based on oriented carbon nanor tubes. Nat. Electron. 4405–415 (2021).

    Article Google Scholar

  • Baker, RJ CMOS: circuit design, layout and simulation 2nd ed. (Wiley-ieeee, 2008).

  • XU, L. et al. Insight into the ballistic train temperature transport in carbon-nanorale field-field effect transistors. IEEE Trans. Electron devices 663535–3540 (2019).

    Article Google Scholar

  • Schwirz, F. Graphene Transistors. Nat. Nanotechnol. 5487–496 (2010).

    Article Google Scholar

  • Mei, X. et al. First demonstration of the amplification at 1 THZ using 25 nm inp mobility transistorist process. IEEE Electron Device Lett. 36327–329 (2015).

    Article Google Scholar

  • Tang, Y. et al. Ultra-high-speed gan-high electron mobility transistors with FT/FMax. from 454/444 GHz. IEEE Electron Device Lett. 36549–551 (2015).

    Article Google Scholar

  • Amado-Rey, from et al. Analysis and development of submillimeter wave-stack-fet power amplifier mm in 35-nm Mhemt technology. IEEE Trans. Thz Sci. Technol. 8357–364 (2018).

    Article Google Scholar

  • Rutherglen, C. et al. Haffer scalable, oriented carbon nanor tube transistors who work at frequencies of over 100 GHz. Nat. Electron. 2530–539 (2019).

    Article Google Scholar

  • Liao, L. et al. High-speed grapha transistors with a self-oriented nanodrah gate. Nature 467305-308 (2010).

    Article Google Scholar

  • Liou, JJ Modern microwave transistors: theory, design and applications (J. Wiley, 2003).

  • Chang, CS, Chao, CP, Chern, JGJ & Sun, JYC Advanced CMOS Technology Portfolio for RF IC applications. IEEE Trans. Electron Dev. 521324–1334 (2005).

    Article Google Scholar

  • Franklin, Ad & Chen, Z. Length scaling of carbon nanor tubes transistors. Nat. Nanotechnol. 5858–862 (2010).

    Article Google Scholar

  • Li, J. et al. Direct identification of metallic and semiconductive, well -reached carbon nanoral tubes in rasterelectron microscopy. Nano lett. 124095–4101 (2012).

    Article Google Scholar

  • Zhou, J. et al. Radio frequency transistors on Nanoriku nanor tubes for K-band amplifiers. ACS Appl. Mater. Interfaces 1337475–37482 (2021).

    Article Google Scholar

  • Rüdenjula, U. et al. MMWAVE Semiconductor Industry Technologies: Status and Evolution White book No. 15 (ETSI, 2018).

  • Baumgardner, each. Inherent linearity in carbon nanor tubes-field effect transistors. Appl. Phys. Lette. 91052107 (2007).

    Article Google Scholar

  • Han, SJ, Garcia, AV, Oida, S., Jenkins, Ka & Haensch, W. Graphene Radio Frequency Receiver Integrated Circuit. Nat. Together. 53086 (2014).

    Article Google Scholar

  • Cao, Q. et al. Arrays of float carbon nanoral tubes with full surface covering for high -performance electronics. Nat. Nanotechnol. 8180–186 (2013).

    Article Google Scholar

  • Brady, GJ et al. Polyfluoric-sorted carbon-nanor tubes-array-field effect transistors with increased electricity density and high in/off ratio. ACS Nano 811614–11621 (2014).

    Article Google Scholar

  • Wei, W. et al. High frequency and noise from Gfets. In Proc. International conference on noise and fluctuations 1–5 (IEEE, 2017).

  • Yu, C. et al. Improvement of the frequency features of graphic field effect transistors on the SIC substrate. IEEE Electron Device Lett. 381339–1342 (2017).

    Article Google Scholar

  • Bessemoulin, A., Tarazi, L., McCulloch, MG & Mahon, SL 0.1-μm Gaas Phemt W-Band Low Rausch amplifier MMIC using the Coplanar wave conductor technology. In Proc. 1. Australian Microwave Symposium (AMS) 1–2 (IEEE, 2014).

  • Kim, D.-H. & Del Alamo, yes 30 nm inas phemts with FT = 644 GHz and FMax.= 681 GHz. IEEE Electron Device Lett. 31806–808 (2010).

  • Takahashi, T. et al. Improvement of FMax. Up to 910 GHz due to the introduction of an asymmetrical gate break and double-siepers-dot-dot structure in 75 nm gate-finalas/ingaas shirt. IEEE Trans. Electron devices 6489–95 (2016).

    Article Google Scholar

  • I, HB et al. LG = 25 nm ingaas/inalas high electron mobility transistors with both FTAnd FMax.Over 700 GHz. Appl. Phys. Express 12054006 (2019).

    Article Google Scholar

  • Urteaga, M. et al. 130 nm-inp DHBTS with FT> 0.52 thz and FMax.> 1.1 Thz. In Proc. 69. Annual device research conference 281–282 (IEEE, 2011).

  • Shinohara, K. et al. Scaling Gan Hemts and Schottky diodes for MMIe submillimeter wave applications. IEEE Trans. Electron devices 602982–2996 (2013).

    Article Google Scholar

  • Heinemann, B. et al. Sigen HBT with FX/FMAX of 505 GHz/720 GHz. In Proc. IEEE International Electron Devices Meeting 3.1.1–3.1.4 (IEEE, 2016).

  • Si-performance amplifier (product number TGA4533-SM T/R) https://www.qorvo.com/products/p/tga4533-sm (Qorvo).

  • Yu, C. et al. Graph enhancer MMIC on SIC substrate. IEEE Electron Device Lett. 37684–687 (2016).

    Article Google Scholar

  • GAN performance amplifier (product number TGA2595) https://cn.qorvo.com/products/p/tga2595 (Qorvo).

  • Gaas Power Amplifier (Product number MAAP-011139-Die) https://www.macom.com/products/product-detail/maap-011139-die (macom).

  • SIGE RF amplifier (product number AdL5723Acpzn-r7) https://www.analog.com/en/products/adl5723.html (adi).

  • Published
    Categorized as Fencing

    Leave a comment

    Your email address will not be published. Required fields are marked *