Dang, S., Amin, O., Shihada, B. & Alouini, M.S. What should 6g be? Nat. Electron. 320–29 (2020).
Saleh, R. et al. System-on-chip: reuse and integration. Proc. IEEE 941050–1069 (2006).
Tessmann, A. et al. 20 nm in0.8Ga0.2As a Moshemt -MMIC technology on silicon. IEEE J. Solid-State Circuits 542411–2418 (2019).
Passi, V. & Raskin, JP Review on the analog/radio frequency performance of progressive silicon -mos -feed. Semikond. Ski. Technol. 32123004 (2017).
Lee, H.-J. et al. Intel 22 NM Finfet (22ffl) process technology for RF and MM wave applications and circuit design optimization for FinFet technology. In Proc. IEEE International Electron Devices meet 316–319 (IEEE, 2018).
Zota, CB et al. High-performance quantum quantum-well-inas-on-si-MOS feed with SUB-20-NM-GATE length for HF applications. In Proc. IEEE International Electron Devices Meeting 39.4.1–39.4.4 (IEEE, 2018).
Zota, CB et al. Ingaas-on isolator-MOS feed with scaled logic devices and recording performance. In Proc. IEEE symposium about VLSI technology 165–166 (IEEE, 2018).
Wu, J. et al. LG= 30 nm inas -channel -mos -feed exhibit FMax.= 410 GHz and FT= 357 GHz. IEEE Electron Device Lett. 39472–475 (2018).
KIM, DH & DEL Alamo, yes 30 nm Pseudomorphs hem on an inp substrate with a cutoff-cutoff frequency of 628 GHz. IEEE Electron Device Lett. 29830–833 (2008).
Novoselov, KS et al. Electrical field in atomically thin carbon films. Science 306666–669 (2004).
Wang, QH, Kalantar-Zadeh, K., KIS, A., Coleman, JN & Strano, MS Electronics and Optoelectronics of two-dimensional transition metal-dichalids. Nat. Nanotechnol. 7699–712 (2012).
Radisavljevic, B., Ramenovic, A., Brivio, J., Giaketti, v. & Kish, A. Unterschicht-Mos2 Transistors. Nat. Nanotechnol. 6147–150 (2011).
Burke, PJ AC performance of nanoelectronics: on the way to a ballistic THZ nanorale transistor. Fixed body electron. 481981–1986 (2004).
Koswatta, Sun, Valdes-Garcia, A., Steiner, MB, Lin, Y.-M. & Avouris, P. Ultimate RF performance potential of carbon electronics. IEEE Trans. Mikrowolk. Theory technology. 592739–2750 (2011).
Zhong, D., Zhang, Z. & Peng, L.-M. Carbon nanotube radio frequency electronics. nanotechnology 28212001 (2017).
Rutherglen, C., Jain, D. & Burke, P. Nanotube Electronics for high -frequency applications. Nat. Nanotechnol. 4811–819 (2009).
Liu, L. et al. Aligned, semi-conducting carbon nanor moth arrays with high density for high-performance electronics. Science 368850–856 (2020).
Shi, H. et al. High frequency transistors based on oriented carbon nanor tubes. Nat. Electron. 4405–415 (2021).
Baker, RJ CMOS: circuit design, layout and simulation 2nd ed. (Wiley-ieeee, 2008).
XU, L. et al. Insight into the ballistic train temperature transport in carbon-nanorale field-field effect transistors. IEEE Trans. Electron devices 663535–3540 (2019).
Schwirz, F. Graphene Transistors. Nat. Nanotechnol. 5487–496 (2010).
Mei, X. et al. First demonstration of the amplification at 1 THZ using 25 nm inp mobility transistorist process. IEEE Electron Device Lett. 36327–329 (2015).
Tang, Y. et al. Ultra-high-speed gan-high electron mobility transistors with FT/FMax. from 454/444 GHz. IEEE Electron Device Lett. 36549–551 (2015).
Amado-Rey, from et al. Analysis and development of submillimeter wave-stack-fet power amplifier mm in 35-nm Mhemt technology. IEEE Trans. Thz Sci. Technol. 8357–364 (2018).
Rutherglen, C. et al. Haffer scalable, oriented carbon nanor tube transistors who work at frequencies of over 100 GHz. Nat. Electron. 2530–539 (2019).
Liao, L. et al. High-speed grapha transistors with a self-oriented nanodrah gate. Nature 467305-308 (2010).
Liou, JJ Modern microwave transistors: theory, design and applications (J. Wiley, 2003).
Chang, CS, Chao, CP, Chern, JGJ & Sun, JYC Advanced CMOS Technology Portfolio for RF IC applications. IEEE Trans. Electron Dev. 521324–1334 (2005).
Franklin, Ad & Chen, Z. Length scaling of carbon nanor tubes transistors. Nat. Nanotechnol. 5858–862 (2010).
Li, J. et al. Direct identification of metallic and semiconductive, well -reached carbon nanoral tubes in rasterelectron microscopy. Nano lett. 124095–4101 (2012).
Zhou, J. et al. Radio frequency transistors on Nanoriku nanor tubes for K-band amplifiers. ACS Appl. Mater. Interfaces 1337475–37482 (2021).
Rüdenjula, U. et al. MMWAVE Semiconductor Industry Technologies: Status and Evolution White book No. 15 (ETSI, 2018).
Baumgardner, each. Inherent linearity in carbon nanor tubes-field effect transistors. Appl. Phys. Lette. 91052107 (2007).
Han, SJ, Garcia, AV, Oida, S., Jenkins, Ka & Haensch, W. Graphene Radio Frequency Receiver Integrated Circuit. Nat. Together. 53086 (2014).
Cao, Q. et al. Arrays of float carbon nanoral tubes with full surface covering for high -performance electronics. Nat. Nanotechnol. 8180–186 (2013).
Brady, GJ et al. Polyfluoric-sorted carbon-nanor tubes-array-field effect transistors with increased electricity density and high in/off ratio. ACS Nano 811614–11621 (2014).
Wei, W. et al. High frequency and noise from Gfets. In Proc. International conference on noise and fluctuations 1–5 (IEEE, 2017).
Yu, C. et al. Improvement of the frequency features of graphic field effect transistors on the SIC substrate. IEEE Electron Device Lett. 381339–1342 (2017).
Bessemoulin, A., Tarazi, L., McCulloch, MG & Mahon, SL 0.1-μm Gaas Phemt W-Band Low Rausch amplifier MMIC using the Coplanar wave conductor technology. In Proc. 1. Australian Microwave Symposium (AMS) 1–2 (IEEE, 2014).
Kim, D.-H. & Del Alamo, yes 30 nm inas phemts with FT = 644 GHz and FMax.= 681 GHz. IEEE Electron Device Lett. 31806–808 (2010).
Takahashi, T. et al. Improvement of FMax. Up to 910 GHz due to the introduction of an asymmetrical gate break and double-siepers-dot-dot structure in 75 nm gate-finalas/ingaas shirt. IEEE Trans. Electron devices 6489–95 (2016).
I, HB et al. LG = 25 nm ingaas/inalas high electron mobility transistors with both FTAnd FMax.Over 700 GHz. Appl. Phys. Express 12054006 (2019).
Urteaga, M. et al. 130 nm-inp DHBTS with FT> 0.52 thz and FMax.> 1.1 Thz. In Proc. 69. Annual device research conference 281–282 (IEEE, 2011).
Shinohara, K. et al. Scaling Gan Hemts and Schottky diodes for MMIe submillimeter wave applications. IEEE Trans. Electron devices 602982–2996 (2013).
Heinemann, B. et al. Sigen HBT with FX/FMAX of 505 GHz/720 GHz. In Proc. IEEE International Electron Devices Meeting 3.1.1–3.1.4 (IEEE, 2016).
Si-performance amplifier (product number TGA4533-SM T/R) https://www.qorvo.com/products/p/tga4533-sm (Qorvo).
Yu, C. et al. Graph enhancer MMIC on SIC substrate. IEEE Electron Device Lett. 37684–687 (2016).
GAN performance amplifier (product number TGA2595) https://cn.qorvo.com/products/p/tga2595 (Qorvo).
Gaas Power Amplifier (Product number MAAP-011139-Die) https://www.macom.com/products/product-detail/maap-011139-die (macom).
SIGE RF amplifier (product number AdL5723Acpzn-r7) https://www.analog.com/en/products/adl5723.html (adi).